INSTALLATION INSTRUCTIONS

R-410A Variable Speed Split System Air Conditioner CVA9, HVA9, TVA9

These instructions must be read and understood completely before attempting installation.

TABLE OF CONTENTS

	PAGE NO.
SAFETY CONSIDERATIONS	1
INSTALLATION RECOMMENDATIONS	2
INSTALLATION	2
STEP 1 — CHECK EOUIPMENT AND JOB SITE	2
STEP 2 — INSTALL ON A SOLID, LEVEL MOUNTING PAD	2
STEP 3 — CLEARANCE REQUIREMENTS	3
STEP 4 — OPERATING AMBIENT	3
STEP 5 — ELEVATE UNIT	
STEP 6 — MAKE PIPING CONNECTIONS	3
REFRIGERANT CONNECTIONS AND RECOMMENDED	
LIQUID AND VAPOR TUBE DIAMETERS (IN.)	4
STEP 7 — MAKE ELECTRICAL CONNECTIONS	5
STEP 8 — COMPRESSOR CRANKCASE HEATER	6
AIRFLOW SETUP FOR OBSERVER FURNACE	
OR FCM4X FAN COIL	6
AIRFLOW SETUP FOR NON-COMMUNICATING FAN COIL	L 6
AIRFLOW SETUP FOR NON-COMMUNICATING FURNACE	ES 6
STEP 9 — INSTALL ACCESSORIES	6
STEP 10 — START-UP	6
STEP 11 — SYSTEM FUNCTIONS AND	
SEQUENCE OF OPERATION	7
STEP 12 — CHECK CHARGE	7
REQUIRED CHARGE (VALUES IN LBS.)	
ADJUSTMENT FOR INDOOR COIL MODEL	8
STEP 13 — PUMPDOWN & EVACUATION	9
MAJOR COMPONENTS	9
TROUBLESHOOTING	10
FACTORY SUPPLIED MODEL PLUG INFORMATION	10
RESISTANCE VALUES VS TEMPERATURE	11
VARIABLE SPEED COMPRESSOR RESISTANCE	
TROUBLESHOOTING	13
FINAL CHECKS	13
CARE AND MAINTENANCE	
TECHNICAL LABELS	14
D 410A OLUCY DECEDENCE CLUDE	10

IMPORTANT: Effective January 1, 2015, all split system and packaged air conditioners must be installed pursuant to applicable regional efficiency standards issued by the Department of Energy.

Information in these installation instructions pertains only to CVA9, HVA9, TVA9 series units.

SAFETY CONSIDERATIONS

Improper installation, adjustment, alteration, service, maintenance, or use can cause explosion, fire, electrical shock, or other conditions which may cause death, personal injury, or property damage. Consult a qualified installer, service agency, or your distributor or branch for information or assistance. The qualified installer or agency must use factory-authorized kits or accessories when modifying this product. Refer to the individual instructions packaged with the kits or accessories when installing.

Follow all safety codes. Wear safety glasses, protective clothing, and work gloves. Use quenching cloth for brazing operations. Have fire extinguisher available. Read these instructions thoroughly and follow all warnings or cautions included in literature and attached to the unit. Consult local building codes and current editions of the National Electrical Code (NEC) NFPA 70. In Canada, refer to current editions of the Canadian electrical code CSA 22.1.

Recognize safety information. This is the safety-alert symbol \(\triangle \) When you see this symbol on the unit and in instructions or manuals, be alert to the potential for personal injury. Understand these signal words; DANGER, WARNING, and CAUTION. These words are used with the safety-alert symbol. DANGER identifies the most serious hazards which will result in severe personal injury or death. WARNING signifies hazards which could result in personal injury or death. CAUTION is used to identify unsafe practices which would result in minor personal injury or product and property damage. NOTE is used to highlight suggestions which will result in enhanced installation, reliability, or operation.

A CAUTION

CUT HAZARD

Failure to follow this caution may result in personal injury.

Sheet metal parts may have sharp edges or burrs. Use care and wear appropriate protective clothing and gloves when handling parts.

▲ WARNING

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this warning could result in personal injury or equipment damage.

R-410A refrigerant systems operate at higher pressures than standard R-22 systems. Do not use R-22 service equipment or components on R-410A refrigerant equipment.

WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Before installing, modifying, or servicing system, main electrical disconnect switch must be in the OFF position. There may be more than 1 disconnect switch. Lock out and tag switch with a suitable warning label.

Indoor Thermostat Control Options

Model	Observer [®] Wall Control	Standard Thermostat
CVA9, HVA9, TVA9	Yes*	Yes**

NOTE: TSTAT0201CW Communicating Wi- Fi wall control. Non Wi- Fi cannot be used.

All trademarks are the property of their respective owners. Wi- Fi^{\otimes} is a registered trademark of Wi- Fi Alliance Corporation.

- * Version 5.0 software or newer.
- ** Using standard thermostat limits functionality of system.

WARNING

ELECTRICAL HAZARD - HIGH VOLTAGE!

Failure to follow this warning could result in personal injury or death.

Electrical components may hold charge. DO NOT remove control box cover for 2 minutes after power has been removed from unit.

PRIOR TO TOUCHING ELECTRICAL COMPONENTS:

Verify zero (0) voltage at inverter connections shown on inverter cover.

WARNING

EXPLOSION HAZARD

Failure to follow this warning could result in death, serious personal injury, and/or property damage.

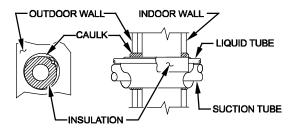
Never use air or gases containing oxygen for leak testing or operating refrigerant compressors. Pressurized mixtures of air or gases containing oxygen can lead to an explosion.

Inverter Cover

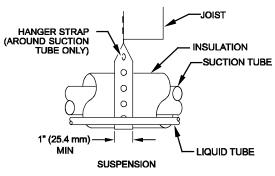
IMPORTANT: The inverter cover should NEVER be removed because there is no reason to remove the inverter cover to access the inverter. The inverter has limited serviceability. Refer to Service Manual for details on field replaceable parts. replacement cover is provided with a replacement inverter.

INSTALLATION RECOMMENDATIONS

In some cases noise in the living area has been traced to gas pulsations from improper installation of equipment.


- 1. Locate unit away from windows, patios, decks, etc. where unit operation sound may disturb customer.
- 2. In noise sensitive applications (such as bedrooms), when a lineset is mounted to ceiling joists or floor joists, the outdoor unit must be located at least 10 ft (3.05 m) away. If this is not possible, create a line set configuration with enough bends to provide 10 ft (3.05 m) of total line set length outside the dwelling
- 3. Ensure that vapor and liquid tube diameters are appropriate for unit capacity.
- 4. Run refrigerant tubes as directly as possible by avoiding unnecessary turns and bends.
- 5. Leave some slack between structure and unit to absorb vi-
- 6. When passing refrigerant tubes through the wall, seal opening with RTV or other pliable silicon-based caulk (see Fig. 1).
- 7. Avoid direct tubing contact with water pipes, duct work, floor joists, wall studs, floors, and walls.
- 8. Do not suspend refrigerant tubing from joists and studs with a rigid wire or strap which comes in direct contact with tubing (see Fig. 1).
- 9. Ensure that tubing insulation is pliable and completely surrounds vapor tube.
- 10. When necessary, use hanger straps which are 1 in. wide and conform to shape of tubing insulation. (See Fig. 1.)
- 11. Isolate hanger straps from insulation by using metal sleeves bent to conform to shape of insulation.

CAUTION


EOUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage. If proper lineset routing techniques are not followed, variable

speed systems can be susceptible to lineset transmitted noise inside the dwelling and, in extreme cases, tubing breakage.

THROUGH THE WALL

A07588

Fig. 1 - Connecting Tubing Installation

The outdoor unit contains the correct amount of refrigerant charge for operation with AHRI rated indoor units when connected by 15 ft (4.57 m) of field-supplied or factory accessory tubing.

See Step 12 on page 7 for proper charging procedure.

IMPORTANT: Liquid-line size is 3/8-in. OD for all CVA9, HVA9, TVA9 applications. The maximum allowable equivalent line set length is 100 ft. (30.5 m).

IMPORTANT: Always install the factory-supplied liquid-line filter drier. Obtain replacement filter driers from your distributor or branch.

INSTALLATION

Specifications for this unit in residential new construction market require the outdoor unit, indoor unit (including metering device), refrigerant tubing sets, and filter drier listed in pre-sale literature. There can be no deviation. Consult the Service Manual - Air Conditioners and Heat Pumps Using R-410A Refrigerant to obtain required unit changes for specific applications and for R-22 retrofit.

Step 1 — Check Equipment and Job Site **Unpack Unit**

Move to final location. Remove carton taking care not to damage unit.

Inspect Equipment

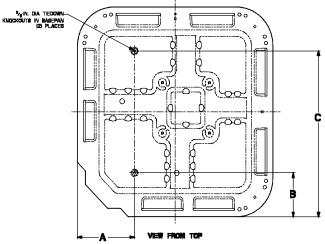
File claim with shipping company prior to installation if shipment is damaged or incomplete. Locate unit rating plate on unit corner panel. It contains information needed to properly install unit. Check rating plate to be sure unit matches job specifications.

Step 2 — Install on a Solid, Level Mounting Pad

If conditions or local codes require the unit be attached to pad, tie down bolts should be used and fastened through knockouts provided in unit base pan. Refer to unit mounting pattern in Fig. 2 to determine base pan size and knockout hole location.

For hurricane tie downs, contact distributor for details and PE (Professional Engineer) Certification, if required.

On rooftop applications, mount on level platform or frame. Place unit above a load-bearing wall and isolate unit and tubing set from structure. Arrange supporting members to adequately support unit and minimize transmission of vibration to building. Consult local codes governing rooftop applications.


Roof mounted units exposed to winds above 5 mph may require wind baffles. Consult the Service Manual - Residential Split System Air Conditioners and Heat Pumps Using R-410A Refrigerant for wind baffle construction.

NOTE: Unit must be level to within $\pm 2^{\circ}$ ($\pm 3/8$ in./ft, ± 9.5 mm/m.) per compressor manufacturer specifications.

Step 3 — Clearance Requirements

When installing, allow sufficient space for airflow clearance, wiring, refrigerant piping, and service. Allow 24 in. (609.6 mm) clearance to service end of unit and 48 in. (1219.2 mm) (above unit. For proper airflow, a 6-in. (152.4 mm) clearance on 1 side of unit and 12-in. (304.8 mm) on all remaining sides must be maintained. Maintain a distance of 24 in. (609.6 mm) between units. Position so water, snow, or ice from roof or eaves cannot fall directly on unit.

On rooftop applications, locate unit at least 6 in. (152.4 mm) above roof surface.

A05177

UNIT BASE PAN	TIEDOWN KN	OCKOUT LOCATI	ONS in. (mm)
Dimension in. (mm)	Α	В	С
23 X 23 (596 X 596)	7- 13/16 (198)	4- 7/16 (102)	18- 1/8 (458)
31.2 X 31.2 (792 X 792)	9- 1/8 (232)	6- 9/16 (167)	24- 11/16 (627)
35 X 35 (889 X 889)	9- 1/8 (232)	6- 9/16 (167)	28- 7/16 (722)

Fig. 2 - Tie-down Knockout Locations

Step 4 — Operating Ambient

The minimum outdoor operating ambient is 40°F (4.4°C) with Observer® Wall Control, 55°F (12.8°C) with non-communicating systems. The maximum outdoor operating ambient is 115°F (46.1°C). Compressor protections will prevent operation below minimum ambient temperature range. The system may operate in cooling up to 125°F (52°C) (52C) with significant reduced capacity cutback above 115°F (46.1°C). Refer to Product Data "Detailed Cooling Capacity" table. Low ambient cooling operation is not currently available.

Step 5 — Elevate Unit

Elevate unit per local climate and code requirements to provide clearance above estimated snowfall level and ensure adequate drainage of unit.

A CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

Do not allow water and/or ice to build up in base pan.

A CAUTION

UNIT OPERATION HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

Locate the unit in such a way that it is stable in all circumstances including adverse weather conditions.

Step 6 — **Make Piping Connections**

A WARNING

PERSONAL INJURY AND UNIT DAMAGE HAZARD

Failure to follow this warning could result in personal injury or death

Relieve pressure and recover all refrigerant before system repair or final unit disposal. Use all service ports and open all flow-control devices, including solenoid valves.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

Do not leave system open to atmosphere any longer than minimum required for installation. POE oil in compressor is extremely susceptible to moisture absorption. Always keep ends of tubing sealed during installation.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

If ANY refrigerant tubing is buried, provide a 6 in. (152.4 mm) vertical rise at service valve. Refrigerant tubing lengths up to 36 in. (914.4 mm) may be buried without further special consideration. Do not bury lines longer than 36 in. (914.4 mm).

Outdoor units may be connected to indoor section using accessory tubing package or field-supplied refrigerant grade tubing of correct size and condition. For tubing requirements between 80 - 100 ft. (24.38 - 30.48 m), capacity and performance losses can occur. Follow the pipe sizing recommendations in the CVA9, HVA9, TVA9 Product data to manage these losses. This unit shall not be installed with greater than 100 ft (30.48 m) of equivalent line length.

Refer to Table 1 for field tubing diameters. No additional accessories are required for line lengths between 80 - 100 ft. (24.4 - 30.5 m) on this product.

Table 1 - Refrigerant Connections and Recommended Liquid and Vapor Tube Diameters (in.)

	LIQUI	D		VAPOR†	
CVA9, HVA9, TVA9	Connection Diame- ter	Tube Diameter	Connection Di- ameter	Max (Rated) Diam- eter	Minimum Tube Diame- ter
24	3/8	3/8	3/4	3/4	5/8
25	3/8	3/8	3/4	7/8	5/8
36	3/8	3/8	3/4	7/8	5/8
37	3/8	3/8	7/8	(1 - 1/8)	5/8
48, 49	3/8	3/8	7/8	(1 - 1/8)	3/4
60	3/8	3/8	7/8	(1 - 1/8)	3/4

[†] Units are rated with 25 ft. (7.6 m) of lineset. See Product Data sheet for performance data when using different size and length line sets.

Outdoor Unit Connected to Factory-Approved Indoor Unit

Outdoor unit contains correct system refrigerant charge for operation with factory-approved, AHRI-rated indoor units when connected by 15 ft. (4.57 m) of field-supplied or factory-accessory tubing, and factory-supplied filter drier. Check refrigerant charge for maximum efficiency.

NOTE: If the indoor furnace coil width is more than the furnace casing width, refer to the indoor coil Installation Instructions for transition requirements.

Install Liquid-Line Filter Drier Indoor

Refer to Fig. 3 and install filter drier as follows:

- 1. Braze 5-in. (127 mm) liquid tube to the indoor coil.
- 2. Wrap filter drier with damp cloth.
- 3. Braze filter drier to above 5- in. (127 mm) liquid tube.
- 4. Connect and braze liquid refrigerant tube to the filter drier.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in unit damage or improper operation.

Installation of filter drier in liquid line is required.

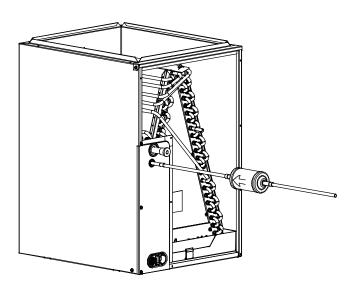


Fig. 3 - Liquid-Line Filter Drier

Refrigerant Tubing connection Outdoor

Connect vapor tube to fitting on outdoor unit vapor service valves (see Table 1).

Sweat Connections

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

- Use a brazing shield
- Wrap service valves with wet cloth or heat sink material.

Use refrigerant grade tubing. Service valves are closed from factory and ready for brazing. After wrapping service valve with a wet cloth, braze sweat connections using industry accepted methods and materials. Consult local code requirements. Refrigerant tubing and indoor coil are now ready for leak testing. This check should include all field and factory joints.

Evacuate Refrigerant Tubing and Indoor Coil

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

Never use the system compressor as a vacuum pump.

Refrigerant tubes and indoor coil should be evacuated using the recommended deep vacuum method of 500 microns. The alternate triple evacuation method may be used. See Service Manual for triple evacuation method. Always break a vacuum with dry nitrogen prior to opening the refrigerant system for servicing.

Deep Vacuum Method

The deep vacuum method requires a vacuum pump capable of pulling a vacuum of 500 microns and a vacuum gauge capable of accurately measuring this vacuum depth. The deep vacuum method is the most positive way of assuring a system is free of air and liquid water. (See Fig. 4)

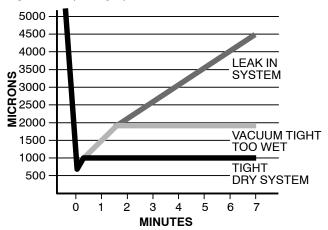


Fig. 4 - Deep Vacuum Graph

A95424

A05178

Do not apply capillary tube indoor coils to these units.

Final Tubing Check

IMPORTANT: Check to be certain factory tubing on both indoor and outdoor unit has not shifted during shipment. Ensure tubes are not rubbing against each other or any sheet metal. Pay close attention to feeder tubes, making sure wire ties on feeder tubes are secure and tight.

Step 7 — **Make Electrical Connections**

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

Do not supply power to unit with compressor terminal box cover removed.

Be sure field wiring complies with local and national fire, safety, and electrical codes, and voltage to system is within limits shown on unit rating plate. Contact local power company for correction of improper voltage. See unit rating plate for recommended circuit protection device.

NOTE: Operation of unit on improper line voltage constitutes abuse and could affect unit reliability. See unit rating plate. Do not install unit in system where voltage may fluctuate above or below permissible limits.

NOTE: Use copper wire only between disconnect switch and unit. **NOTE:** Install branch circuit disconnect of adequate size per NEC to handle unit starting current. Locate disconnect within sight from and readily accessible from unit, per Section 440-14 of NEC.

Route Ground and Power Wires

Remove access panel to gain access to unit wiring. Extend wires from disconnect through power wiring hole provided and into unit control box.

A WARNING

ELECTRICAL SHOCK HAZARD

Failure to follow this warning could result in personal injury or death.

The unit cabinet must have an uninterrupted or unbroken ground to minimize personal injury if an electrical fault should occur. The ground may consist of electrical wire or metal conduit when installed in accordance with existing electrical codes.

Connect Ground and Power Wires

Connect ground wire to ground connection in control box for safety. Connect power wiring to contactor as shown in Fig. 5.

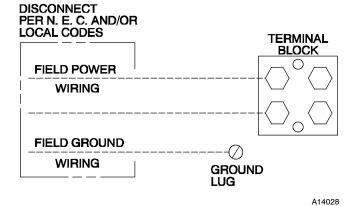
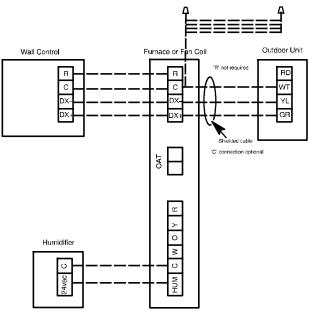



Fig. 5 - Line Power Connections

Observer® Control Wiring - Observer Wall

Connect four wires from Observer to communicating furnace / fan coil with communicating motor capability. Only two wires from furnace / fan coil DX+ (GR), DX- (YL) are connected to the outside inverter wiring GR (DX+), YL (DX-) (see Fig. 6). Connect C (WT) is recommended if wires are available (see Fig. 6). This will reduce the chance of communication issues. Unused low voltage wires should be bundled together and terminated with a wire nut at each end. The end nearest indoor coil should be connected to C terminal.

IMPORTANT: This system requires the power supplied to the outdoor unit, and the indoor unit, for the Observer Wall Control to communicate with the outdoor unit.

A150636

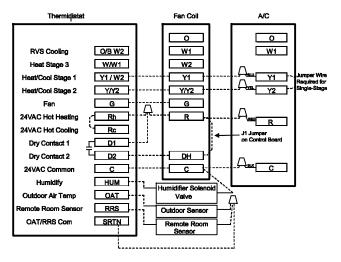
Fig. 6 - Communicating Furnace or Fan Coil Wiring with Communicating Variable Speed AC

Connect Control Wiring- Non-Communicating

4 wires are required when connecting CVA9, HVA9, TVA9 models to non-communicating 2-stage thermostats. Use Fig. 7 For required connections. Unit is configured by factory for Observer® communicating control. To wire unit for non-communicating control, disconnect the DX+ = GN and DX- = YL wires from green plug and connect appropriate wires to low voltage terminal block. Use wire nuts to attach thermostat wire to low voltage choke harness LVCH harness.

General Information

Use 18-20 solid AWG color-coded, insulated (355C minimum) wire for low voltage control wires. All wiring must be NEC Class 2 and must be separated from incoming power leads.


Installations using greater than 200 feet of low voltage wiring should consult the Observer wall control manual for additional guidelines regarding daisy chaining wiring method and terminating resistors.

Never route control wiring in parallel to high voltage power wires when possible as electrical noise may transfer and generate nuisance fault codes. Where low voltage control and high voltage wires must cross paths, do so at perpendicular angles to eliminate transferred noise. If further communication issues exist, consider using shielded low voltage wires and only connect shielding to C terminal at end nearest indoor coil.

Use furnace transformer, fan coil transformer, or accessory transformer for control power requirement of system accessories external to the OD unit. The outdoor unit has its own transformer power.

Final Wiring Check

IMPORTANT: Check factory wiring and field wire connections to ensure terminations are secured properly. Check wire routing to ensure wires are not in contact with tubing, sheet metal, etc. Ensure that high and low voltage is separated where possible, to minimize induced noise from VFD to communication wiring.

A160119

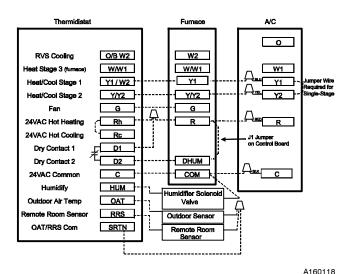


Fig. 7 - Low Voltage Wiring (Non-Communicating)

Step 8 — Compressor Crankcase Heater

This compressor has an internal crankcase heater. Furnish power to the unit a minimum of 24 hours before starting the unit for the first time.

Upon initial start-up of unit, status code 68 will be generated and system will operate at stage 2 for 11 minutes. This operation is important to system reliability and cannot be bypassed. Each time high voltage is removed and reapplied this behavior will be repeated.

To furnish power to heater only, set thermostat to OFF and close electrical disconnect to outdoor unit.

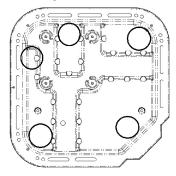
Power is not required to the indoor unit or Observer[®] Wall Control for proper operation of heater. Crankcase heater will be intelligently energized as needed between operations, even when the Observer Wall Control or thermostat and indoor unit is not installed, as long as there is power to the outdoor unit.

Airflow Setup for Observer Furnace or FCM4X Fan Coil (communicating)

This system can only be installed with communicating indoor and Observer Wall Control TSTAT0201CW software version 5.0 or greater. When using a Observer Wall Control, airflow is automatically selected based on equipment size. The user has the option of selecting Comfort, Efficiency and Max airflow for Cooling modes. These should be selected based on balance between the homeowner's comfort and energy consumption expectations. See Observer Wall Control Installation Instructions for additional available adjustments.

Due to using a communicating control with the fan coil or the furnace, dip switch adjustments are not necessary. The outdoor unit configuration and the indoor airflows are determined by communicating control setup.

Airflow Setup for Non-communicating Fan Coil


The system can be installed with a standard 2-stage thermostat and FVM4X fan coil without additional accessories. Select appropriate unit size on fan coil Easy select board.

Airflow Setup for Non-communicating Furnaces

For installations with non-communicating furnaces, set airflows to 350-400 cfm/nominal ton in high stage and 70-80 percent of high stage airflow in low stage.

Step 9 — Install Accessories

No refrigeration circuit accessories are required or are available for installation within the unit. External to the unit, the same accessories such as support feet, wind baffle etc., available on other units, can also be used on this line of product. For models utilizing 23 inch x 23 inch base pans, it is recommended to use 5 support feet in order to fully support unit. See Fig. 8. Refer to the individual Installation Instructions packaged with kits or accessories when installing.

A14008

Fig. 8 - Recommended Support Feet Location (for 23 x 23 basepans)

Step 10 — Start-Up

A CAUTION

UNIT OPERATION AND SAFETY HAZARD

Failure to follow this caution may result in minor personal injury, equipment damage or improper operation.

Observe the following:

- 1.Do not overcharge system with refrigerant.
- 2.Do not operate unit in a vacuum or at negative pressure.
- 3.Do not disable low pressure transducer or system safety devices such as discharge thermistor or the high pressure switch.
- 4.Dome temperatures may be hot.
- 5.Discharge thermistor is engaged tight on the discharge tube.

CAUTION

PERSONAL INJURY HAZARD

Failure to follow this caution may result in personal injury.

Wear safety glasses, protective clothing, and gloves when handling refrigerant.

CAUTION

ENVIRONMENTAL HAZARD

Failure to follow this caution may result in environmental damage.

Federal regulations require that you do not vent refrigerant to the atmosphere. Recover during system repair or final unit disposal.

Step 11 — System Functions and Sequence of Operation

The CVA9, HVA9, TVA9 models utilize either Observer® Wall Communicating Wall Control or conventional thermostat. When using Wall Control controls, a call for cooling will energize the outdoor fan and compressor to run at lowest cooling demand. If this does not satisfy cooling demand, the system will ramp up in stages until it satisfies the demand. After coping with the higher demand, the unit returns to lower capacity operation until the demand is satisfied or until an increase in demand. When using a conventional thermostat, the thermostat controls the staging of outdoor unit.

Upon initial start-up (or any power cycle) of the unit there will be a 5-minute delay before the unit will start, once a call for heating or cooling is given. The compressor will then ramp to stage 2 and operate there for one minute. When the one-minute time has elapsed, status code 68 will be generated and the system will continue to operate at stage 2 for 10 minutes. This operation is important to system reliability and cannot be bypassed. Each time high voltage is removed and reapplied, this behavior will be repeated.

When the 10 minutes has elapsed, the unit will ramp to the called-for stage. It will take approximately three additional minutes to get to high-stage compressor RPM.

When all demand is satisfied, the compressor will shut off. As the unit operates at lower capacity, system vapor (suction) pressure will be higher than it is during a standard single-stage system operation or during a higher capacity operation.

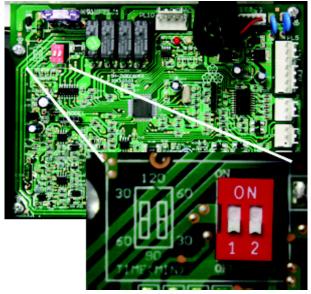
The Observer Wall Control displays the operation mode and fault codes as specified in the troubleshooting section. See Table 6 for codes and definitions.

The conventional thermostat inputs are designed to work with most indoor units. See AHRI for approved combinations. Connections are Y/Y2, Y1, R and C. Depending on thermostat and indoor unit, the system will operate at 1 or 2 capacities in cooling mode.

NOTE: Only one code will be displayed on the outdoor unit control board (the most recent, with the highest priority). The latest codes are stored and can be accessed via the Observer Wall Control.

Upon a call for cooling through the Observer Wall Control (or the Y1 and/or Y2 connections in a non-communicating system), the Application Operation Control (AOC) board (see Fig. 17) will request a compressor speed and outdoor fan motor speed based on the indoor space demand and outdoor conditions.

If the conditions are correct for operation, the control board will allow the requested operation to begin, but if the control board determines that the conditions are not correct, the board will decide what other operation nearing that condition is acceptable. The inverter Motor Operational Control (MOC) then outputs the three-phase PWM signal and frequency that gently ramps the compressor speed up to stage 2, and then will adjust to the demanded speed. The gentle ramp-up results in no locked rotor amps to the compressor motor. The unit nameplate for compressor LRA will be stamped N/A (not applicable).


During operation, the AOC monitors itself and the compressor operation along with the system pressures and temperatures. The MOC board monitors the temperature, current and operational status of the compressor, OD fan and the inverter itself. During operation, the compressor speed will be adjusted to meet the changes to the demand.

Outdoor Fan Motor Operation

The compact ECM outdoor fan motor is a variable-speed brushless DC (BLDC) motor that operates at speeds from 400 to 1050 RPM. The motor is a 3-phase permanent magnet-type motor. Just like the compressor, this motor speed is determined by the inverter output frequency and amplitude. (Fig. 9)

Motor speed is controlled through the inverter board in the outdoor unit and no electronic module is attached. Motor speed is slowed as the building load decreases, maintaining the proper condensing temperature for both cooling and dehumidification. As the building load increases, the motor will increase speed until it is at maximum speed at the maximum building load.

At unit start-up, there is a slight delay and thrust motion of the fan motor/blade in the reverse direction, prior to ramping-up the fan assembly.

A14021

Fig. 9 - AOC Control Board

Step 12 — Check Charge

Charging Procedure: Force system to operate in high stage cooling by creating a large differential between room temperature and set point on thermostat. If using conventional 2-stage thermostat, use multi-meter to verify that 24 VAC is present between C, Y1 /Y2 terminals at outdoor unit.

Factory charge amount is shown on unit rating plate for high stage. Target subcooling chart is provided on back of control box door see Fig. 10 - 16 for example. To properly check or adjust charge, condition must be favorable for subcooling charging. Favorable conditions exists when outdoor temperature is between 65°F (18°C) and 100°F (38°C), and the indoor temperature is between 70°F (21°C) and 80°F (27°C). Follow the procedure below:

Unit is factory charged for 15ft (4.57 m) of lineset. Adjust charge by adding or removing 0.6 oz/ft (17.7 g/m) of 3/8 liquid line above or below 15ft (4.57 m) respectively.

For standard refrigerant line lengths (80ft/24.4 m or less), allow system to operate in cooling mode at least 25 minutes. If conditions are favorable, check system charge by subcooling method. If any adjustment is necessary, adjust charge slowly and allow system to operate for 25 minutes to stabilize before declaring a properly charged system.

If the indoor temperature is below 70°F (21.11°C), or the outdoor temperature is not in the favorable range, adjust charge for line set length above or below 15ft (4.57 m) and indoor fan coil /furnace coil per Table 4. Charge level should then be appropriate for the system to achieve rated capacity. The charge level should then be checked at another time when the both indoor and outdoor temperatures are in a more favorable range.

NOTE: If the line length is beyond 80ft (24.38 m) or greater than 20ft (6.10 m) vertical separation see Long line guideline for special charging requirement.

Table 2 – Required Charge (values in lbs.) Adjustment for Indoor Coil Model

Furnace Coil or Fan Coil Model	24	25	36	37	48	49	60
EA*4X24	-	-	/	/	/	/	/
EHD4X24	-	-	/	/	/	/	/
EHD4X30	-	-	/	/	/	/	/
F(V,C)M4X24	/	-	-	/	/	/	/
EA*4X30	-	-	/	/	/	/	/
EN(A,D)4X30	-	-	/	/	/	/	/
ENH4X36	-	-	-	-	/	/	/
F(V,C)M4X36	/	-	-	-	/	/	/
EA*4X36	-	+.50	-	-	/	/	/
END4X42	+.50	+.50	-	+.75	/	/	/
EA*4X42	+.50	+.50	-	+.75	/	/	/
EHD4X36	+.50	+.50	-	+.75	/	/	/
EHD4X42	+.50	+.50	+.75	+.75	/	/	/
EN(A,D)4X31	+.50	+1.25	+.75	+.75	/	/	/
EN*4X48	+.50	+1.25	+.75	+.75	-	-	/
EHD4X48	+.63	+1.25	+.75	+1.00	-	-	/
EN(A,D)4X37	+.63	+1.25	+.75	+1.00	-	-	/
EN(A,D)4X43	+.63	+1.25	+.75	+1.00	-	-	/
EA*4X48	/	/	+.75	+1.00	-	-	/
EN*4X60	/	/	/	+1.00	-	+.13	-
EHD4X60	/	/	/	+1.00	-	+.13	-
F(V,C)M4X48	.63	+1.25	+.75	+1.00	-	+.13	/
F(V,C)M4X60	/	/	+.75	+1.00	+1.50	+.63	+1.00
EA*4X60	/	/	/	/	+1.50	+.63	+1.00
EN*4X61	/	/	/	/	+1.50	+.63	+1.00

^{/ =} Comb. not allowed

Note: Charge adders are in decimal format

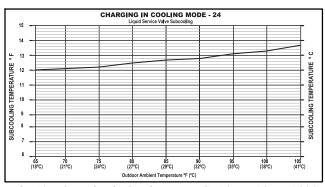


Fig. 10 - Charging in Cooling Mode CVA9, HVA9, TVA924

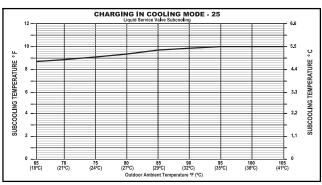


Fig. 11 - Charging in Cooling Mode CVA9, HVA9, TVA925

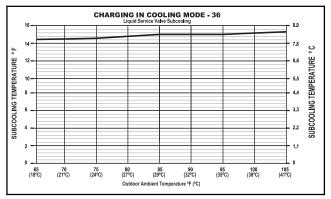


Fig. 12 - Charging in Cooling Mode CVA9, HVA9, TVA936

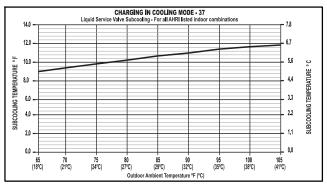


Fig. 13 - Charging in Cooling Mode CVA9, HVA9, TVA937

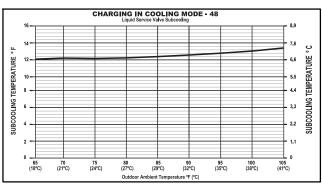


Fig. 14 - Charging in Cooling Mode CVA9, HVA9, TVA948

^{- =} No charge adjust for ID

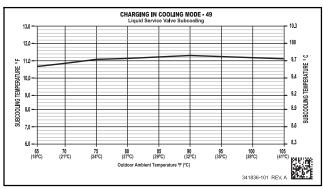


Fig. 15 - Charging in Cooling Mode CVA9, HVA9, TVA949

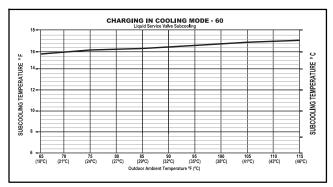


Fig. 16 - Charging in Cooling Mode CVA9, HVA9, TVA960

Step 13 — Pumpdown & Evacuation

A CAUTION

ENVIRONMENTAL HAZARD

Failure to follow this caution may result in environmental damage.

Federal regulations require that you do not vent refrigerant to the atmosphere. Recover during system repair or final unit disposal.

If this system requires either a Pump Down or Evacuation for any reason, the procedures below must be followed:

Pump Down

Because this system has an inverter controlled compressor, suction pressure transducer, conventional procedure cannot be used to "pump down" and isolate the refrigerant into the outdoor unit.

- Connect gauges to CVA9, HVA9, TVA9 liquid and vapor service valve ports to monitor operating pressures during and at completion of the procedure.
- Force system to operate in high stage by creating a large differential between room temperature and set point on thermostat. Use multi-meter to verify that 24 VAC is present between C and Y1 and Y2 terminals at outdoor unit.
- 3. Close the liquid service valve.
- The unit will continue to run until high or low pressure switches open. Close vapor service valve once compressor shuts down.
- 5. Remove power from indoor and outdoor unit prior to servicing unit.
- 6. A quantity of charge will remain in isolated section of system dependent on ambient temperature and overall system charge. This charge must be manually recovered. A recovery system will be required to remove final quantity of refrigerant from indoor coil and line set.

Evacuation and recovery of refrigerant from CVA9, HVA9, TVA9

- Connect gauges to CVA9, HVA9, TVA9 liquid and vapor service valve ports to monitor operating pressures during and at completion of the procedure. Attach recovery system or vacuum pump to gauge set as needed for the service procedure. The service valves must be open to evacuate the unit through the line set service ports.
- 2. Begin evacuation or refrigerant. Allow extra time for refrigerant recovery and establishing a thorough evacuation.

MAJOR COMPONENTS

Variable Speed Control Board

A160120

Fig. 17 - AOC (Application Operational Control) Board

The AOC board is located in the lower right hand side of inverter tray. It's functions include:

- Compressor speed control
- · Outdoor fan motor control
- Crankcase heater operation
- · Pressure switch monitoring
- Time Delays
- Pressure Transducer measurements
- PEV control (pressure equalizer valve)
- Temperature measurements
- · Inverter communication and control

Inverter

The inverter is located inside the control box. This is an air-cooled device that communicates with the control board and drives the compressor and fan motor to the demanded RPM. The inverter is always powered with line voltage since no contactor is used. The inverter changes the line voltage to DC volts and then recreates 3 phase sine waves that vary in frequency to drive the compressor and fan motor at the desired RPM.

NOTE: The unit may be operated with an Observer® Wall Control or a standard 2-stage thermostat. Observer Wall Control will utilize 5 stages cooling, while 2-stage thermostat will only allow 2 discrete stages of cooling operation.

Variable Speed Compressor

This unit contains a variable speed rotary compressor that has a wide operating range. It operates on a variable 3 phase sine wave provided by the inverter. This compressor can only be operated by the specific inverter supplied with the unit.

A CAUTION

EQUIPMENT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage and/or improper operation.

Do not attempt to apply line voltage directly to the compressor. This will destroy the compressor.

Field control Connections

For communicating operation use the communication Observer® plug only. Only two wires, DX+, DX- (GN,YL), are required. If necessary, connect C for additional grounding (see Fig. 6). If using standard 2-stage thermostat, connect discrete inputs (R,C,Y2,Y1) for 2-stage control in cooling modes.

Pressure Transducer (SPT)

A 5 VDC output low pressure transducer that provides a 0-5 VDC data for interpretation by the control board for a 0 to 200 psig range of pressure at the suction tube. This interpreted pressure data is then intelligently used by the AOC control board for low pressure cut-out, loss of charge management, compressor protection, oil circulation management, and lubrication management.

Pressure Equalizer Valve (PEV)

At the end of every compressor operation (after the 3.5 minute Time Guard period), the equalizer valve opens for 150 seconds plus an additional 15 seconds of protection before allowing the compressor to start ramping up.

The PEV is located next to the suction and discharge of the compressor. The function of this valve is to prevent the compressor from starting with a high refrigerant pressure differential, thus helping the reliability of the compressor.

NOTE: A hissing sound may be heard during the equalization process. This is normal.

TROUBLESHOOTING

Systems Communication Failure

If communication is lost with the Observer Wall Control, the green LED will go out. Check the wiring to the Observer Wall Control and the indoor and outdoor units and power.

Model Plug

Each control board contains a model plug. The correct model plug must be installed for the system to operate properly (see Table 3).

The model plug is used to identify the type and size of unit to the control.

On new units, the model and serial numbers are inputted into the AOC board's memory at the factory. If a model plug is lost or missing at initial installation, the unit will operate according to the information input at the factory and the appropriate error code will flash temporarily. A FAST Parts replacement AOC board contains no model and serial information. If the factory control board fails, the model plug must be transferred from the original board to the replacement board for the unit to operate.

When installing AC unit with older fan coils, a model plug change may be required. NOTE: The model plug takes priority over factory model information input at the factory. If the model plug is removed after initial power up, the unit will operate according to the last valid model plug installed, and flash the appropriate fault code temporarily.

Table 3 - Factory Supplied Model Plug Information

CVA9, HVA9,	FAST PART		ISTANCE PHMS)
TVA9	NUMBER	1- 4 (R1)	2- 3 (R2)
24	1184942	18K	91K
25	1188023	18K	5.1K
36	1184944	18K	150K
37	1188024	18K	18K
48	1184946	18K	220K
49	1188025	18K	33K
60	1184948	18K	360K

Pressure Switch Protection

The outdoor unit is equipped with high pressure switch. If the control senses the opening of a high pressure switch (open 600+/-5 psig, close 470+/-10 psig @ 77° F), it will respond as follows:

- 1. Display the appropriate fault code (see Table 6).
- 2. After a 6 minute delay, if there is a call for cooling and HPS is reset, the PEV opens for 150 seconds to equalize system pressures. The compressor and fan will then ramp to the next lower stage of operation until demand is satisfied. The staging down and resetting to the highest stage will end after 2 hours of accumulated operation without further HPS trips.
- 3. A system malfunction will occur after repeated HPS faults and the stages has reached the lowest level. This could take five consecutive HPS trips if the first occurred in stage 5 demand or 1 HPS trip if in stage 1 demand.
- 4. In the event of a high-pressure switch trip or high-pressure lockout, check the refrigerant charge, outdoor fan operation, and outdoor coil (in cooling) for airflow restrictions.
- 5. In the event of a low-pressure trip or low-pressure lockout, check the refrigerant charge and indoor airflow (cooling).

Brown-Out Protection

If the line voltage is less than 187V for at least 4 seconds, the Compressor and OD fan goes to 0 rpm. Compressor and fan operation are not allowed until voltage is a minimum of 190V. The control will flash the appropriate fault code (see Table 6).

230V Line (Power Disconnect) Detection

The control board senses the presence of absence of 230V through inverter feedback. Voltage should present at all times when system is in service regardless if system is running or standby. If there is no 230V at the inverter when the indoor unit is powered with a cooling demand, the appropriate fault code is displayed on Wall Control (communicating only – see Table 6). If system is configured with conventional thermostat (non-communicating), no fault code will be displayed on AOC board, nor will any status LEDs be lit. Use multimeter to check for the presence of 230V in this situation.

Temperature Thermistors

Thermistors are electronic devices which sense temperature. As the temperature increases, the resistance decreases. 10Kohm thermistors are used to sense outdoor air temperature (OAT), coil temperature (OCT) and the suction line temperature (OST) located between the reversing valve and the accumulator. A 50Kohm thermistor is used to sense discharge temperature (ODT).

Refer to Table 4 and Fig. 18 and 19 for resistance values versus temperature.

Table 4 – 10K/50Kohm Resistance Values vs Temperature

	Kohms C (°F)
TEMPERATURE	RESISTANCE (Kohms)
25.0 (77.0)	10.0 + / - 2.3%
0.0 (32.0)	32.6 + / - 3.2%
-28.0 (-18.4)	85.5 + / - 3.4%
50	Kohms
125.0 (257.0)	1.7 + / - 1.6%
75.0 (167.0)	7.40 + / - 2.0%
25.0 (77.0)	50.0 + / - 2.3%

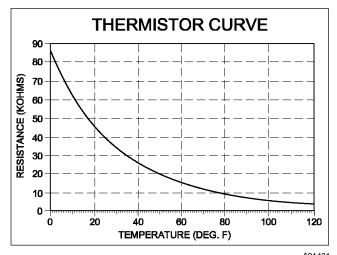


Fig. 18 - 10K Thermistor Resistance Versus Temperature

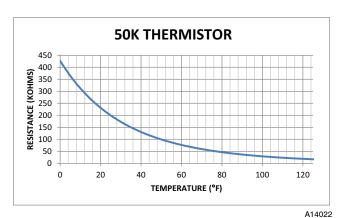


Fig. 19 - 50K Thermistor Resistance Versus Temperature

If the outdoor air or coil thermistor should fail, the control will flash the appropriate fault code (see Table 6).

IMPORTANT: The outdoor air thermistor, coil thermistor and suction thermistor should be factory mounted in the final locations. Check to ensure thermistors are mounted properly (See Fig. 20, 21, 22 and 23).

Thermistor Sensor Comparison

11

The control continuously monitors and compares the outdoor air temperature sensor and outdoor coil temperature sensor to ensure proper operating conditions. The comparison is:

In cooling if the outdoor air sensor indicates ≥ 10°F (≥ 5.6°C) warmer than the coil sensor (or) the outdoor air sensor indicates ≥ 25°F (≥ 12°C) cooler than the coil sensor, the sensors are out of range.

If the sensors are out of range, the control will flash the appropriate fault code as shown in Table 6.

The thermistor comparisons are not performed during low ambient cooling.

Outdoor Coil Thermistor

The outdoor coil thermistor is a 10Kohm resistor used for multiple system operations. It provides the coil/liquid line temperature to the AC unit board and Observer® Wall Control. Low ambient operation, and assistance with OAT temperature measurement are some of the functions. The sensor must be securely mounted to the tube connecting the coil and distributor. See Fig. 21 for proper placement. See Table 4 for proper resistances.

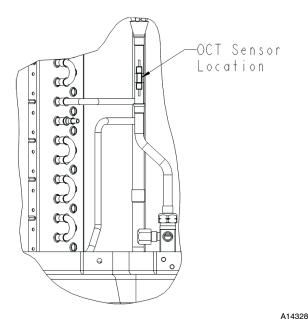
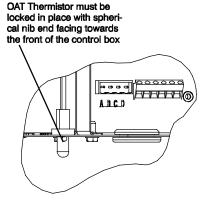
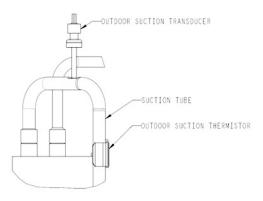



Fig. 20 - Outdoor Coil Thermistor (OCT) Attachment (On Distributor Tube)

A11142

Fig. 21 - OAT Thermistor Location (Bottom of Control Box)

Suction Thermistor (OST)

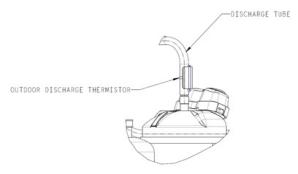

Suction Thermistor is used to accurately measure suction temperature and must be secured on the suction tube and aligned longitudinally to the vertical surface of the tube axis (see Fig. 22).

CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage or improper operation.

In order to minimize the ambient influence, make sure the thermistor curved surface hugs the pipe surface and is secured tight using the wire tie fished through the original slot insulating polymer body.



A14023

Fig. 22 - Suction Thermistor (OST) Attachment (On Suction Tube)

Discharge Thermistor (ODT)

Discharge Thermistor is used for protection against over temperature of the compressor. The ODT is located on the compressor discharge stub-out (see Fig. 23). Maximum ODT is approximately $240~F^{\circ}$ ($116~C^{\circ}$).

A14024

Fig. 23 - Discharge Thermistor (ODT)

Variable Speed Compressor Winding Resistance

This compressor operates with 3-phase variable frequency PWM variable voltage. For troubleshooting certain fault codes related to compressor resistances, follow these steps:

- 1. Disconnect compressor power leads from the inverter MOC terminals, U (YEL), V (RED), and W (BLK).
- Measure the resistance between YEL to RED, YEL to BLK, and RED to BLK and compare to Table 5 values. Each resistance set should be equal.
- 3. Measure the resistance to ground for each lead.
- 4. If the resistances check out, reconnect power leads to appropriate terminal.
- 5. If the resistances appear to be abnormal, it will be necessary to measure the resistance at the compressor fusite terminals.
- During the removal of the compressor fusite cap, do not remove the RTV sealant. Remove the harness plug, measure the resistances, and compare to Table 5.
- 7. Special care will need to be taken with the replacement of the compressor fusite cap. Make sure the two holes in the compressor fusite terminal box are still full of RTV sealant before the cap is reinstalled. The factory RTV can be reused as long as none of it has been removed during the cap removal.
- 8. Reinstall compressor sound blanket making sure discharge thermistor and compressor power harness are routed as they were from the factory

Table 5 − Variable Speed Compressor Resistance (winding resistance at 70°F ± 20°F)

WINDING	M	ODEL CVA	9, HVA9, T	VA9 (OHM	s)
WINDING	24	25	36	37, 48	49, 60
Between terminals	1.13	.59	.59	.37	.24
Between terminal & ground			>1 mega		

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage and/or improper operation.

Do not use Meggar for measuring the winding resistance.

A CAUTION

UNIT DAMAGE HAZARD

Failure to follow this caution may result in equipment damage and/or improper operation.

To maintain water integrity of the compressor fusite terminal box, the two holes in outer ring need to be full of RTV sealant.

Fan Motor

If verification of proper operation is required for the fan motor used in this unit, follow these steps:

- 1. Disconnect fan motor connector from control board.
- 2. Measure resistance between any 2 of the 3 leads present.
- 3. Compare measurement to values below

Fan Moto	r Resistance
Unit Size	Resistance (Ohms)
24	21.2
25, 36, 37, 48, 49, 60	11.1

Status Codes

A ATTENTION

Occasionally the unit may become unresponsive due to certain combinations of previous fault codes. There may not be anything wrong with the unit or components. The unit may require a high voltage power cycling for at least 2 minutes or longer to clear the condition. If the condition persists, conduct further troubleshooting per the service manual.

Table 6 shows the status codes flashed by the amber status light. Most system problems can be diagnosed by reading the status code as flashed by the amber status light on the control board.

The codes are flashed by a series of short and long flashes of the status light. The short flashes indicate the first digit in the status code, followed by long flashes indicating the second digit of the error code.

The short flash is 0.25 seconds ON and the long flash is 1.0 second ON. Time between flashes is 0.25 seconds. Time between short flash and first long flash is 1.0 second. Time between code repeating is 2.5 seconds with LED OFF.

Codes are easily read from Observer® Wall Control.

EXAMPLE:

3 short flashes followed by 2 long flashes indicates a 32 code. Table 6 shows this to be low pressure switch open.

Status Code Recall Mode

Active status codes are stored in memory even when power is absent. The most recently flashing status code (highest priority active) can be recalled from memory via status code recall mode and displayed using the amber LED. The status code recall mode is accessed by shorting (use a clip wire) the "force defrost" connector (labeled J2 on the board) and then power ON the unit. Please make sure the unit is turned OFF before shorting the pins. Status call recall mode will continue as long as the "force defrost" terminals remain shorted. The unit will not attempt to heat or cool while the terminals remain shorted. Once the status code is read, power down the unit and remove the short.

Table 6 - Troubleshooting

	SERVI	CE	
AMBER LED DESCRIPTION	* FLASH CODE (Amber LED)	RESET TIME (Minimum) Minutes	* * TYPE
Standby	ON, no flash		
Variable Capacity Mode	1, pause		
Variable Speed Range Cutback	1 (2 sec ON), longer pause (1 second OFF)		
2-stage "LOW" Capacity	1, pause		••
2-stage "HIGH" Capacity	2, pause		
2-stage "REDUCED" Capacity	4, pause		••
Invalid Model Plug/Inverter Size	25	N/A	System Malfunction
High Pressure Switch Open	31	6	Fault
Low Pressure Trip	32	6	Local
Lost Inverter Communications	33	6	Local
Brownout Event	46	6	Local
Lost Inverter Communications	48	6	System Malfunction
Compressor Over Current Fault	49	6	Local
Outdoor Air Temp Sensor Fault	53	N/A	Fault
Suction Temp Sensor Fault	54	N/A	Fault
Coil Temp Sensor Fault	55	N/A	Fault
OAT-OCT Thermistor Out of Range	56	N/A	Event
Suction Pressure Sensor Fault	57	N/A	Fault
Discharge Temperature Out of Range Event	59	15	Local
Fan Inverter Fault	61	6	Local
Fan Inverter Current Fault	63	6	Local
D C Voltage Low - SPD Limiting	65	N/A	Local
Outdoor Fan Dropped Out	66	6	Event
Stator Heater Fault	67	6	Event
10 Minute Stage 2 Warmup Delay	68	10	Event
Inverter / Compressor Internal Fault	69	15	System Malfunction
Compressor Dropped Out	71	6	Event
Suction Over Temperature Event	72	15	Local
Discharge Temp Out of Range Lockout	74	2 Hours	System Malfunction
Maximum Power Mode-Temp	75	N/A	Local
Fan Inverter Lockout	76	2 Hours	System Malfunction
Maximum Power Mode-Comp Current	77	N/A	Local
Compressor/Inverter Fault	79	6	Local
Suction Over Temp Lockout	82	4 Hours	System Malfunction
Low Pressure Lockout for 4 hours	83	4 Hours	System Malfunction
High Pressure Lockout for 4 hours	84	4 Hours	System Malfunction
Fan Inverter Current Lockout	86	6	System Malfunction
Compressor/Inverter Lockout	88	2 Hours	System Malfunction
Inverter VDC-Out Over Voltage Event	91	6	Local
Inverter VDC-Out Under Voltage Event	92	6	Local
Compressor Over Current Lockout	95	2 Hours	System Malfunction
VDC Under Voltage Lockout	96	2 Hours	System Malfunction
VDC Over Voltage Lockout	97	2 Hours	System Malfunction
High Torque Event	98	N/A	Event
High Torque Lockout	99	2 Hours	System Malfunction
night forque Lockout	OFF	N/A	No Power
	UFF	IN/A	INO I OWGI

^{*} Short Flashes indicate the first digit in the status code followed by long flashes indicating the second digit of the status code.

^{*} Local Faults displayed only on amber LED and not on generic wall control or recorded in fault history.

A170002

FINAL CHECKS

IMPORTANT: Before leaving job, be sure to do the following:

- Ensure that all wiring is routed away from tubing and sheet metal edges to prevent rub-through or wire pinching.
- Ensure that all wiring and tubing is secure in unit before adding panels and covers. Securely fasten all panels and covers.
- 3. Tighten service valve stem caps to 1/12-turn past finger tight.
- Leave User's Manual with owner. Explain system operation and periodic maintenance requirements outlined in manual.

CARE AND MAINTENANCE

For continuing high performance and to minimize possible equipment failure, periodic maintenance must be performed on this equipment.

Frequency of maintenance may vary depending upon geographic areas, such as coastal applications. See Owner's Manual for information.

TECHNICAL LABELS

								100	Sizo	2011	W.	<u> </u>	92/ Size Outdoor With FCM/Y2/1*** Stage 5 Indoor Cooling	1/4××	Ceto	2 2	200		5					
								170	0170	0	utdoor A	mbient 7	Outdoor Ambient Temperature - Degrees F, Dry Bulb	ire - De	rees F.I	ory Bulb	5		20					
			65	ς.				75			82				92				105				115#	
											ntering	ndoor Te	Entering Indoor Temperature - Degrees F, Wet Bulb	re - Deg	rees F, V	et Bulb								
STAGE-5 Mode	5 Mode	72	29	1169	22	72	29	63††	22	72) 29	911	. 25	72	67 63††	11 57	72	29	63††	22	72	29	63††	22
	SCFM		708	8			9	663			634				809				642					
	₩Bh†	30.22	27.45	25.48	23.97	28.48	25.86	24.00	22.54	26.87	24.40	22.64 2	21.29 25	25.27 22	22.96 21.31	.31 20.08	124.17	7 21.96	20.38	19.56				
Comfort	\$/T‡	0.52	0.70	0.73	1.00	0.52	0.70	0.72	1.00	0.52	0.70	0.72	1.00	0.52 0	0.70 0.	0.73 1.00	0 0.54	0.73	0.75	1.00				
+ 1	AMPS*	5.78	5.85	5.85	5.88	6.85	98.9	6.85	6.84	7.99	7.95	7.92	7.88	9.22	9.13	9.05 8.99	9 10.63	3 10.50	10.40	10.34				
De-namiany	HI PR	256	251	248	246	293	289	285	283	335	330	327	324 3	382 3	376 37	372 369	9 428	422	418	417				
•	LO PR	155	141	131	124	155	141	131	124	156	142	132	124	157	143 13	133 125	2 160	146	136	131				
	SCFM		825	35			, s	825			825			1	825			 	825				825	
•	MBh†	30.94	28.12	26.11	25.17	29.44	26.76	24.85	24.16	27.93	25.39	23.58 2	23.12 26	26.39 24	24.00 22	22.29 22.07	7 24.96	3 22.69	21.07	21.05	23.36	21.24	19.74	19.93
	\$/T‡	0.54	0.73	0.76	1:00	0.55	0.75	0.77	1.00	0.55	92.0	0.79	1.00	0.56 0	0.78 0.80	1.00	0 0.57	0.80	0.82	1.00	0.59	0.82	0.85	1.00
Efficiency	AMPS*	5.94	5.99	6.02	6.04	7.08	7.09	7.09	7.08	8.29	+	╁	8.21	9.57	9.49	41 9.41	1 10.95	+-	10.73	10.73	12.40	12.22	12.08	12.10
•	HI PR	257	252	249	248	296	291	287	286	338	+		+	385		375 374	431	425	451	421	487	480	475	476
	LO PR	159	145	135	131	161	147	137	133	163	1	1	+	165	151 14	140 139	991 6	╁	142	142	169	154	144	145
	SCFM		848				, œ	840		1	833			1	825		ŀ	 	825				825	
	₩Bh†	30.58	27.95	26.04	25.26	29.18	26.6	24.83	24.23	27.74	25.35	23.61	23.18 26	26.26 24	24.00 22	22.35 22.12	24.91	22.73	21.15	21.11	23.41	21.35	19.87	20.04
	s/T‡	0.55	0.74	_	+	+	_	-	1.00	+	-	+	+	+	+	+	+	+	_	+	0.59	0.82	0.84	1.00
Maximum	*SdWV	5.83	5 92	5.97	5.98	+	7.04	7.07	202	8 22	t	+	+	+	+	+	÷	+	+	10.78	19.49	12.29	12.19	19.91
	HIPR	256	252	249	247	292	291	288	287	338				+	+	+	+	+	┿	425	490	485	482	482
	AND I	160	146	136	133	162	148	137	134	163	+	$^+$	+	+	$^+$	+	+		149	142	168	154	143	145
																- -				!				
								925	Size	Outac	or W	Ith PC	Outdoor With FCM4X48***[18***	. Stage	e 5 In	5 Indoor Cooling	Coolii	gر					
										0	utdoor A	mbient 1	Outdoor Ambient Temperature - Degrees F, Dry Bulb	ure - De	grees F, I	ory Bulb								
			ø	65				75			82				92				105				115#	
										ш	ntering	ndoor Te	Entering Indoor Temperature - Degrees F, Wet Bulb	re - Deg	rees F, V	et Bulb								
STAGE-5 Mode	5 Mode	72	29	1469	25	72	29	1169	25	72) / /9	941	. 29	72 (1169 6311	11 22	72	29	63††	25	72	29	63††	22
	SCFM		۲	208			9	663			634				809				809					
,	MBh†	29.49	26.97	25.13	23.77		25.56	23.79	22.41	26.55	24.24		21.23 25	25.12 22	22.91 21.	21.29 20.08	Ė	2 17.42	16.21	16.12				
Comfort	‡ <u>/</u> /S	0.52	0.70	0.73	1.00		0.70	0.72	1.00	0.52	0.70	0.72	1.00	0.52 0	0.70 0.	0.73 1.00	0 0.57	0.79	0.81	1.00				
De-Humidity	AMPS*	4.64	4.90	2.08	5.18		5.99	6.12	6.19	26.9									7.14	7.14				
,	HI PR	237	234	232	231	276	273	271	269	319									392	392				
	LO PR	160	145	134	127	159	145	134	126	159	145	134	126 1	160	145 13	134 127	7 170	155	144	144				
	SCFM		825	ίζι				825			ಷ				ñ				ಷ				825	
	↓ЧBW	30.15	27.61	25.77	25.00			24.67	24.09		+		_					-		•••	23.52	21.46	19.97	20.15
Efficiency	s/T‡	0.54	0.74	0.77	1.00	-	0.75	0.78	1.00	0.56									0.82	1.00	0.59	0.82	0.84	1.00
, included	AMPS*	4.64	4.92	5.11	5.16		6.03	6.17	6.20	7.02							9.26	9.6	9.64	9.63	10.87	10.85	10.83	10.83
	HI PR	241	238	232	234	280	276	274	273	323	319	316	316 3	369	366 36	363 363	3 416	413	411	411	472	469	467	467
•	LO PR	164	150	138	135	166	151	140	137	167	152	141	139 1	169	154 14	143 142	170	155	144	145	172	157	146	148
	SCFM		840	2			œ	850			820				825				825				825	
•	MBh†	30.29	27.73	25.87	25.16	29.06	26.59	24.81	24.33	27.75	25.38	23.67	23.38 26	26.30 24	24.04 22.40	.40 22.20	24.99	9 22.81	21.24	21.22	23.56	21.49	19.99	20.17
	\$/ T ‡	0.55	0.75	0.77	1:00	0.56	92.0	0.78	1.00	0.56					0.78 0.80	1.00			0.82	1.00	0.58	0.82	0.84	1.00
Maximum	AMPS*	4.65	4.93	5.12	5.17	5.84	6.05	6.19	6.22	7.04		7.30	7.30 8		8.36 8.41	41 8.41	1 9.58	9.63	9.62	9.64	10.88	10.87	10.84	10.84
•	HI PR	242	238	236	235	281	277	274	274	323									411	411	473	470	468	468
	LO PR	165	150	139	135	167	152	140	138	168	153	145	141 1	170	155 14	143 143	3 170	155	144	145	172	157	146	148

Single-line Sing									920	Q:10	Outo	N.	/i+h E	VIM	****	C+C	20 5	0000	2						
Canada C									8	0170		utdoor,	Ambient	Tempera	ture - D	egrees F,	Dry Bull	2	3	מ					
String bar Str				9	55				75			82				92				105				115#	
State 186 187 18												Entering	Indoor 7	Temperat	ure - De	grees F,	Wet Bulk								
Style Styl	STAGE-	5 Mode	72	29	94		72	29	63††	22	72		63††	22	72								29	63††	22
STATE STAT		SCFM		б	₩.		-	1	œ	:		4		_		÷		-		; ;					
No. No.	Comfort	MBNT	43.20	39.72			-+			32.41				-				-			`\				
Mathy Sign		\$/I	0.51	0.68	0.70	1.00	0.51			1.00	0.51	0.67		-				-				0			
Fig. 18 128 128 128 128 128 128 128 138 138 138 138 138 138 138 141 141 150 121 150	De-Humidity	AMPS*	8.54	8.70	8.80	8.87	10.31			10.42	12.21	12.20		-								6			
CONTRINED 1989 129 189 129 189	•	H H	263	259	256	254	304		297	294	320	345	342		400							10			
No. 1000 1		LO PR	152	138	128	118	152	138	128	117	152	138	128		153										
Mitch 2389 40.09 27.9 26.0 27.0		SCFM		٦)50			1	020			105	0.			1050				1050				1050	
No. 2		MBh†	43.98	40.39			-			34.31				_				-							28.61
Milk	Cfficionary	\$/T‡	0.52	0.70	0.72	1.00	0.53		0.73	1.00	0.53	0.72	0.74											0.78	1.00
HIPP 154 124	EIIICIEIIC	AMPS*	8.60	8.76	8.87	8.93	10.46			10.60	12.45										L	 		18.84	18.77
COPM 159 142 131 123 132 134 143 135 135 145 134 128 135 154 145 134 128 135 145 134 139 135 145 134 139 135 145 134 139 135 140 1		HI PR	264	260	257	255	306		298	296	352	347	344		403								504	501	200
No. 1, 1000 1, 1000		LO PR	156	142	131	123	157	143	133	126	159	145	134	128	161								150	139	137
Milk 4337 40,42 37,56 3568 4247 36,47		SCFM		٤	980			Ť	200			120	9			1200				1050				1050	
String S		MBh†	43.97	40.45			+	L	36.72	35.61	40.53			_				_				+			28.55
Hornor 283 286 284 382 1051 1077 1077 1077 1249 1249 1249 4179 4179 1479 1489 14		\$/T‡	0.53	0.71	0.73	1.00	0.55		0.77	1.00	0.55	92.0	0.78	1				1				╁		0.78	1.00
High 263 256 256 256 306 302 238 237 352 247 344 345 465 185	Maximum	AMPS*	8.60	8.76	8.87	8.92	10.61			10.77	12.64	12.64		+				+-				+			18.71
Correction 157 143 152 152 153		HI PR	263	259	256	254	+-			297	352	347	344					+-				+-			497
F.5 Inche 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 5.7 7.2 6.7 6.31 6.3		LO PR	157	143	132	125	161	147	136	132	163	148	138	+	165			L				\vdash	150	139	137
SCFM S90 27 67 6511 57 72 67 6511 57 72 67 6511 57 72 67 6511 67 67 67 67 67 67 67									937	Size	Outdo	or W	/ith FC	CM4X		Sta	ge 5	oopu	Coo	lina					
Famous F												utdoor	Ambient	Tempera	ture - D	agrees F	Drv Bull			9					
F-5 Node 72 67 631 57 72 631 6				9	ıc				75			85				96		<u> </u>		105		ŀ		115#	
SCFM S90 S1 S1 S1 S1 S2 S2 S2 S4 S2 S2 S4 S4												-ntering	Indoor I	omnerat	Iro - Do	Or Page F	Wet Bulk	-		2					
SCFM 4310 3920 36.40 34.29 40.72 37.05 34.42 32.45 36.25 30.44 51.25 10.00 6.52 0.79 0.72 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.72 10.0 0.52 0.70 0.73 10.0 0.52 0.70 0.70 0.70 0.70 0.70 0.70 0.70 0.7	L	- P	F	5	1100	ŀ	ř	19	1100	1	Γ	E 22	100011	ellipei at	- 4	, easily	Met Duit		ŀ		ŀ	ŀ	1	TTOO	1
SCHM 990 SCHM 990 SACT 990 750 770 990 992 347 368 367 368 367 368<	SIAGE-	5 Mode	7/	۵	E S		2 2	۱	D3TT	۵/	7./		03 TT	1	7/						-1	+	۸	93TT	2(
MIBHT 43.10 39.20 36.44 38.23 38.42 <th< th=""><th></th><th>SCFM</th><th>066</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th>902</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th>-</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th></th<>		SCFM	066				-				902			_				-							
S/TH 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.52 0.70 0.73 1.00 0.74 0.74 0.76 1.00 0.75 0.74 0.74 0.75 0.75 0.74 0.74 0.75 0.75 0.74 0.74 0.75 1.00 <th< th=""><th>1</th><th>MBh</th><th>43.10</th><th>39.20</th><th></th><th></th><th>-</th><th></th><th></th><th>32.45</th><th>38.22</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>က္က</th><th></th><th></th><th></th></th<>	1	MBh	43.10	39.20			-			32.45	38.22											က္က			
AMPS* 6.55 6.66 6.74 6.80 7.88 7.94 7.98 8.00 9.35 9.35 9.34 10.39 10.89 10.84 10.78 12.88 12.80 12.73 12.67 H PR 239 236 234 239 365 367 407 403 401 399 390 300	+	s/T‡	0.52	0.70	0.73	1.00				1.00	0.52	0.70										0			
Horist 158 144 134 126 148 141 131 141 131 141 131 142 135 145 1	De-Humidify	AMPS	6.55	99.9	6.74	6.80				8.00	9.35	9.35		_				_				1.			
SCFIN 1050 126 158 144 134 126 158 144 134 126 158 144 134 126 158 144 134 126 158 144 134 126 158 144 134 126 158 144 134 126 159 145 159 145 159 145 150 166 MBht 4348 39.55 36.75 37.50 34.94 33.49 39.14 35.1 35.0 31.25 30.45 34.80 35.7 37.8 30.7 37.8 37.9 34.94 33.4 35.1 35.0 31.2 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.7 37.4 37.4 37.8 37.4 38.7 40.4 40.7 40.7 40.7 40.7 40.7 40.7 </th <th>•</th> <th>H PR</th> <th>239</th> <th>236</th> <th>234</th> <th>233</th> <th>276</th> <th></th> <th>271</th> <th>569</th> <th>318</th> <th>314</th> <th>311</th> <th></th> <th>362</th> <th></th>	•	H PR	239	236	234	233	276		271	569	318	314	311		362										
SCFM 1050 <th< th=""><th></th><th>LOPR</th><th>28</th><th>144</th><th>134</th><th>120</th><th>28</th><th></th><th>134</th><th>127</th><th>861</th><th>144</th><th>134</th><th>+</th><th>/61</th><th></th><th></th><th>T</th><th></th><th></th><th></th><th>7</th><th></th><th></th><th></th></th<>		LOPR	28	144	134	120	28		134	127	861	144	134	+	/61			T				7			
MBh† 43.48 39.57 39.75 39.49 39.49 39.51 32.00 36.91 33.60 31.25 30.45 34.86 31.71 29.48 28.98 28.58 31.43 27.56 AMPS* 6.68 6.77 0.74 1.00 0.54 0.74 1.00 0.55 0.75 0.75 0.79 1.00 0.56 0.77 0.79 1.00 0.57 0.75 0.75 0.77 0.79 1.00 0.57 0.75 0.75 0.77 0.79 1.00 0.57 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.75 0.76 0.75 0.75 0.75 0.76 0.76 0.75 0.75 0.76 0.76 0.75 0.75 0.76 0.76 0.75 0.75 0.76 0.75 0.76 0.76 0.75 0.76 0.76 0.76 0.76<		SCFM	1050				_				1050							_							
AMPS* 6.68 6.79 6.88 6.93 6.71 0.75 0.71 0.74 0.75 0.74 0.75 <t< th=""><th></th><th>MBh</th><th>43.48</th><th>39.55</th><th></th><th></th><th>_</th><th></th><th></th><th>33.49</th><th>39.14</th><th></th><th></th><th>_</th><th></th><th></th><th></th><th>_</th><th></th><th></th><th></th><th>-</th><th></th><th>27.56</th><th>27.36</th></t<>		MBh	43.48	39.55			_			33.49	39.14			_				_				-		27.56	27.36
HIPR 239 236 234 233 277 274 271 270 319 315 312 311 355 361 357 409 405 403 402 464 399 457 LOPR 160 146 135 129 161 147 137 131 163 149 138 134 165 151 140 137 166 152 141 139 168 153 149 457 SCFM 1080	Efficiency	±1/s	0.53	0.71	0.74	00.1	0.53			00.1	0.54	0.74	0.76	+				_				_		18.0	00.1
LOPR 160 146 135 127 131 163 149 140 140 403 <th>•</th> <th>AMPS</th> <th>90.0</th> <th>6/.0</th> <th>98.9</th> <th>6.93</th> <th>8.03</th> <th></th> <th></th> <th>8.21</th> <th>19.61</th> <th>9.63</th> <th>9.63</th> <th>\dashv</th> <th></th> <th></th> <th></th> <th>\rightarrow</th> <th></th> <th></th> <th></th> <th>-+</th> <th></th> <th>14.94</th> <th>14.94</th>	•	AMPS	90.0	6/.0	98.9	6.93	8.03			8.21	19.61	9.63	9.63	\dashv				\rightarrow				-+		14.94	14.94
LOPR 160 146 135 129 161 147 137 131 163 143 165 151 140 137 166 152 141 139 168 152 143 143 140 137 166 152 141 143 150 <th></th> <th>H H</th> <th>539</th> <th>236</th> <th>234</th> <th>233</th> <th>277</th> <th>274</th> <th>271</th> <th>270</th> <th>319</th> <th>315</th> <th>312</th> <th>311</th> <th>365</th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th></th> <th>457</th> <th>456</th>		H H	539	236	234	233	277	274	271	270	319	315	312	311	365									457	456
SCFM 1880 1200 <th< th=""><th></th><th>LO PR</th><th>160</th><th>146</th><th>135</th><th>129</th><th>161</th><th></th><th>137</th><th>131</th><th>163</th><th>149</th><th>138</th><th></th><th>165</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>143</th><th>143</th></th<>		LO PR	160	146	135	129	161		137	131	163	149	138		165									143	143
MBht 43.11 39.40 36.72 35.16 41.64 38.08 35.51 34.83 39.55 36.14 37.70 33.29 37.40 34.16 31.73 39.54 29.02 29.71 27.66 S/IT 0.53 0.72 0.75 1.00 0.56 0.79 1.00 0.56 0.79 1.00 0.56 0.77 0.79 1.00 0.56 0.77 0.79 0.79 1.00 0.56 0.71 0.79 0.79 1.00 0.56 0.71 0.79 0.79 1.00 0.56 0.77 0.79 0.79 1.00 0.56 0.77 0.79 0.79 1.00 0.56 0.77 0.79 0.79 1.00 0.56 0.77 0.79 0.79 1.00 0.56 0.77 0.79 1.00 0.75 0.79 0.79 1.00 0.75 0.79 0.79 1.00 0.75 0.79 0.79 1.00 0.75 0.79 1.00 0.75 0.79<		SCFM	1080								1200				1200			1(
S/T‡ 0.53 0.72 0.75 1.00 0.56 0.77 0.79 0.80 0.79 0.87 0.79 0.82 1.00 0.57 0.79 0.70 0.79 0.70 0.79 0.87 0.79 0.80 0.81 0.79 0.80 0.81 0.70 <th< th=""><th></th><th>MBh†</th><th>43.11</th><th>39.40</th><th></th><th></th><th>-</th><th></th><th></th><th>34.83</th><th>39.55</th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th></th><th>27.66</th><th>27.43</th></th<>		MBh†	43.11	39.40			-			34.83	39.55													27.66	27.43
AMPS* 6.49 6.62 6.70 6.74 8.11 8.74 9.76 9.75 11.39 11.40 11.39 13.01 13.07 13.03 13.01 15.08 14.90 1490 HIPR 235 232 230 229 275 269 269 317 314 312 364 361 359 408 405 403 464 460 459 LOPR 161 147 136 151 140 138 167 152 142 140 168 154 143 143 165 151 140 152 142 140 168 154 143 163 166 152 143 143 165 168 154 143 168 154 143 168 154 143 168 154 143 168 154 143 168 154 143 168 154 143 143 168 154 1		\$/T‡	0.53	0.72	0.75	1.00	0.56			1.00	0.56	0.78	0.80											0.81	1.00
235 232 230 229 275 272 269 269 317 314 312 364 361 359 359 408 405 403 464 460 459 161 147 136 131 165 151 140 138 167 152 142 140 168 154 143 143 166 152 141 139 168 154 143	Махішип	AMPS*	6.49	6.62	6.70	6.74				8.26	89.6	9.74												14.90	14.88
161 147 136 131 165 151 140 138 167 152 142 140 168 154 143 143 166 152 141 139 168 154 143		HI PR	235	232	230	229	275		269	269	317	314	312										460	459	458
		LO PR	161	147	136	131	165	151	140	138	167	152	142	140	168								154	143	142

								970	Siza	-	> 100	Vith E		(60××	Ţ.	200	ndon	948 Size Outdoor With ECM4X60*** Stage 5 Indoor Cooling	ina					
								}			Outdoor	Outdoor Ambient Temperature - Degrees F, Dry Bulb	Temper	ature - L	egrees F	Dry Bul	ء		9					
			9	65				75			α	2			92				105				115#	
											Entering	Entering Indoor Temperature - Degrees F, Wet Bulb	Tempera	ture - D	grees F,	Wet Bull								
STAGE-5 Mode	-5 Mode	72	29	#œ	22	75	29	63‡	22	72	29	63††	22	72	0 (3‡‡	. 22	75 (67 63††	111 22	72	29	e3‡‡	22
	SCFM	C	1221			-+		3	c,	_	124/	5	_		~ .	1	_		= 1		9			
Comfort	MBnT CT+	58.25	03.20	49.62	42.70	20.25	07.0	47.99	43.10	52.90	48.38	45.08	45.24	49.02	45.38 4	82.27	39.38	40.20 42	42.29 39	39.38 30.80	2 2			
+	+1/c	0.0	10.07			-			00.1	76.0	0.09	0.12	1.	0.32			+			Ĺ	2 6			
De-Humidify	SE H	340	306			-+			0.00	435	403	956	_	405			-				20 8			
	LO PR	126	161	148	150	129		150	132	126	165	132	137	129			+				0 0			
	SCFM	!		1400				400	!	i	1400	200		į	1400		+		9				1400	
	MBh	59.48	54 45	50 78	47 89	56.66	51.86	48.37	45 84	53.76	49.21	5 01	43.81	50 77	46.50 4	3.37	41 79 47	47 74 49	43 71 40	40 79 39 59	59 44 60	40.84		37.36
	\$/T#	0.52	0.70			_			1.00	0.53	0.72		-				_				_			1.00
Efficiency	AMPS*	8.60	8.76	8.87	8.92	10.61		10.77	10.77	12.64	12.64	١.	١.				╆			Ĺ,	+-	3 18.98	ľ	18.71
	HI PR	263	259	256	254	306	302	298	297	352	347	344	342	403	397	393	392 4	448 4	442 4	439 437	7 508	502	499	497
	LO PR	157	143	132	125	161	147	136	132	163	148	138	135	165	150	139	137	163	148 1	137 134	4 165	150	139	137
	SCFM		14	1440			۲	009			1600	8			1600				1400		-		1400	
	MBh†	29.00	54.13	50.59	47.97	26.77	52.12	48.76	47.31	53.76	49.38	46.21	45.16	20.67	46.57 4	43.60 4	42.93 47	47.05 43	43.21 40	40.42 39.32	32 43.91	1 40.34	37.77	37.08
	s/T‡	0.53	0.71	0.73	1.00	0.55	0.74	0.77	1.00	0.55	92.0	0.78	1.00	0.56	0.77	0.79	1.00 0	0.55 0	0.75 0.	0.77 1.00	0.56	77.0	0.79	1.00
Maximum	AMPS*	8.60	8.76	8.87	8.92	10.61	10.71	10.77	10.77	12.64	12.64	12.64	12.62	14.79	14.71	14.63	14.60 16	16.81 16	16.66 16	16.52 16.45	45 19.23	ľ	18.78	18.71
	HI PR	263	259	256	254	306	302	298	297	352	347	344	342	403	397	393	392 4	448 4	442 4	439 437	7 508	205	499	497
	LO PR	157	143	132	125	161	147	136	132	163	148	138	135	165	150	139	137 1	163 1	148 1	137 134	4 165	150	139	137
					6	49 Si	949 Size Ou	rdoo	r With	, EN(A.D.V	utdoor With EN/A D W/4X60I 24**+*8MV*1352422**	01 24	8*+*	/IV*13	5242	Щ	tage	5 Ind	oor C	Stage 5 Indoor Cooling			
											Outdoor	Outdoor Ambient Temperature - Degrees F, Dry Bulb	Tempera	ature - L	egrees F	Dry Bui	H							
			9	65				75			82	22			95				105				115#	
											Entering	Entering Indoor Temperature - Degrees F, Wet Bulb	Tempera	ture - De	grees F,	Wet Bulk								
STAGE-5 Mode	5 Mode	72	29	않뷰	22	72	29	63††	22	72		93+	22	72) 29	1169	- 25	72	67 63††	11 22	72	29	63††	22
	SCFM		12	1236				200			1196	96	Ī	1	1184		1	1	1110					
	MBh‡	54.08	49.07	45.47	42.65	52.34	1 47.51	44.02	41.42	50.72	46.04	42.67	40.47	48.93	44.41 4	41.17	39.33 46	46.59 42	42.29 39	39.20 37.41	41			
Comfort	\$/T\$	0.52	0.69	0.71		H		0.72	1.00	0.52	0.70	0.73	1.00	0.53		0.74		0.53 0	0.71 0.	0.74 1.00	01			
+	AMPS*	10.98	10.75			Ė			11.78	13.91	13.65		13.36	15.71		_			٠.		03			
De-Humidify	H H	236	233	232	231	273			267	315	311	309	307	360							_			
	LO PR	151	137	128	120	152	139	129	122	154	140	130	124	156	142	. 135	127 1	156 1	143 13	133 127	7			
	SCFM		12	1200			•	20			1200				1200				1200				1200	
	MBh‡	53.80	48.81	45.22				-	41.42	50.75	46.06			_	44.50 4			٥.			Ė	-	37.94	37.10
Efficione	\$/ 1 ‡	0.51	0.68		1.00				1.00	0.52	0.70	0.73	1.00	0.53									0.77	1.00
Elliciency	AMPS*	10.89	10.66		10.39	Ė		ľ	11.78	13.92	13.66	13.48	13.38	15.75	15.48 1			17.83 17	L	17.34 17.27	27 20.20	0 19.89	19.67	19.63
	HI PR	236	233	232	231	273	270	568	267	315	311	309	308	360	326	354	352 4	411 4	406 40	403 402	2 466	461	458	457
	LO PR	150	137	127	119	152	139	129	122	154	141	131	124	126	143	. 135	127 1	158 1	145 1	135 131	1 161	147	137	134
	SCFM	L	14			1		I\$			1=				1400				1400				1200	
	MBh‡	54.94	49.92	46.30	44.40	53.44	48.55	42.04	43.51	51.76	47.05	43.64	42.52	49.94	45.40 4	42.12 4	41.40 47	47.94 43	43.60 40	40.47 40.16	16 45.01	1 40.92	37.97	37.11
	\$/T\$	0.53	0.71	0.74	1.00		0.72	0.75	1.00	0.54	0.74	92.0	1.00	0.55	0.75	0.78	1.00 0	0.56 0	0.77 0.	0.80 1.00	0.55	0.75	0.77	1.00
Maximum	AMPS*	11.36	11.12	10.95	10.86	12.81	12.55	12.37	12.30	14.45	14.19	13.99	13.94	16.30	16.03	15.84	15.80 18	18.41 18	18.12 17	17.92 17.91	91 20.18	8 19.90	19.70	19.64
	H PR	234	232	230	229	273		268	566	315	311	309	308	361	357		354 4	412 4	407 40	405 404	4 466	462	458	457
	LO PR	154	141	131	126	126	143	133	129	158	145	134	132	160	147	136	135 1	162 1	149 1	138 138	8 161	147	137	134

								3 096	Size (960 Size Outdoor With FCM4X60***L Stage 5 Indoor Cooling	or Wit	h FCI	14X60	3] ***	Stage	5 Ind	oor C	oolin	[[
										Out	door An	bient Ter	Outdoor Ambient Temperature - Degrees F, Dry Bulb	Degre	es F, Dr	y Bulb								
			65				75				82				92			105	5			115#		
										En	tering In	door Tem	Entering Indoor Temperature - Degrees F, Wet Bulb	- Degree	s F, Wei	Bulb								
STAGE	STAGE-5 Mode	72	29	#1	22	72	29	911	22	72 6	9 29	911 22	7 72	29	11£9	1 57	72	29	941	22	72 6	67 63	911	22
	SCFM		1488	38			1566	90			1514				1440			1367	25					
	MBh†	71.59	62.29	60.75	55.91	26'89	62.96	28.62	54.72	65.28 59	59.62 55	55.53 51.93	93 61.47	7 56.15	5 52.31	1 48.92	57.61	52.65	49.06 4	45.90				
Comfort	S/T‡	0.51	0.67	0.70	1.00	0.52	69.0	0.71	1.00	0.52 0.	0.69 0.	0.71 1.00	0.52	5 0.69	0.71	1.00	0.52	69.0	0.71	1.00				
-+ De-Himidify	AMPS*	12.59	10.61	16.67	18.98	14.52	12.64	19.00	98.8	16.32 14	14.79 8.	8.87 10.76	76 18.53	3 16.81	10.77	7 12.63	8.60	19.23	12.64	14.62				
	HI PR	340	306	443	502	330	352	203	256	435 4	403 2	256 298	495	448	298	344	263	208	344	393				
	LO PR	126	161	148	150	129	163	120	132	126 1	165 1	132 137	129	163	136	138	157	165	138	140				
	SCFM		1600	00			1600	00			1600				1600			1600	00			1600		
	MBh†	72.44	66.10	61.52	57.24	69.15	63.13	58.78	90.55	65.82 60	60.10 55	55.99 52.83	83 62.40	0 57.00	53.13	3 50.51	58.86	53.83	50.18 4	48.12 5	55.24 50	50.50 47	47.11 4	45.62
	\$/T‡	0.51	0.68	0.71	1.00	0.52	69.0	0.72	1.00	0.52 0.	0.70 0.	0.73 1.00	0.53	3 0.71	0.74	1.00	0.54	0.72	0.75	1.00	0.54 0.	0.74 0.	92'0	1.00
Emclency	AMPS*	8.60	8.76	8.87	8.92	10.61	10.71	10.77	10.77	12.64 12	12.64 12	12.64 12.62	62 14.79	9 14.71	14.63	3 14.60	16.81	16.66	16.52	16.45	19.23 18	18.98 18	8.78	18.71
	HI PR	263	259	256	254	306	302	298	297	352 3	347 3	344 342	12 403	397	393	392	448	442	439	437	508 5	502 4	499	497
	LO PR	157	143	132	125	191	147	136	132	163 1	148	138 135	165	150	139	137	163	148	137	134	165 1	150 1:	139	137
	SCFM		1680	30			1905	35			2000				2000			1600	00			1600		
	MBh†	72.23	66.23	61.81	58.03	69.91	64.18	29.97	27.77	66.70 61	61.24 57	57.27 56.00	00 63.17	7 58.03	3 54.29	9 53.46	58.65	53.88	50.35 4	48.26 5	55.04 50	50.57 47	47.31 4	45.78
	\$/T‡	0.52	69.0	0.72	1.00	0.54	0.73	92'0	1.00	0.55 0.	0.76 0.	0.78 1.00	0.56	3 0.77	0.80	1.00	0.54	0.72	0.75	1.00	0.54 0.	0.74 0.	92'0	1.00
MAXIII	AMPS*	8.60	8.76	8.87	8.92	10.61	10.71	10.77	10.77	12.64 12	12.64 12	12.64 12.62	62 14.79	9 14.71	14.63	3 14.60	16.81	16.66	16.52	16.45	19.23 18	18.98 18	8.78	18.71
	HI PR	263	259	526	254	306	302	598	297	352 3	347 3	344 342	12 403	397	393	392	448	442	439	437	508 5	502 4	499	497
	LO PR	157	143	132	125	161	147	136	132	163 1,	148 1	138 135	165	150	139	137	163	148	137	134	165 1	150 1:	139	137
									l															ĺ

Total capacities are net (I.D blower heat subtracted) system capacities based on 25' line set.

If additional tubing length and/or indoor unit is located above outdoor unit, a slight variation in capacity may occur.

System amps are total of indoor and outdoor amps

S/T are based on 80 F db entering air at the indoor coil. For sensible capacities at other than 80 F db, deduct 835 Btuh per 1000 cfm of indoor coil air from MBhxS/T for each degree below 80 F, or add 835 Btuh per 1000 cfm of indoor coil air from MBhxS/T for each degree above 80 F

At TVA rating indoor condition (75 F db/ 63 F wb), All other indoor air temperatures are at 80 F db ‡#

System runs Stage 5 Efficiency Mode for Comfort+dh Mode at 115 degrees F outdoor temperature.

R-410A QUICK REFERENCE GUIDE

- · Observe all WARNINGS, CAUTIONS, NOTES, and bold text.
- R-410A refrigerant operates at 50% 70% higher pressures than R-22. Be sure that servicing equipment and replacement components are designed to operate with R-410A.
- · R-410A refrigerant cylinders are rose colored.
- Recovery cylinder service pressure rating must be 400 psig, DOT 4BA400 or DOT BW400.
- R-410A systems should be charged with liquid refrigerant. Use a commercial type metering device in the manifold hose.
- Manifold sets should be 750 psig high- side and 200 psig low- side with 520 psig low- side retard.
- Use hoses with 750 psig service pressure rating.
- Leak detectors should be designed to detect HFC refrigerant.
- R-410A, as with other HFC refrigerants, is only compatible with POE oils.
- · Vacuum pumps will not remove moisture from oil.
- Do not use liquid line filter- driers with rated working pressures less than 600 psig.
- · Do not install a suction line filter- drier in liquid line.
- POE oils absorb moisture rapidly. Do not expose oil to atmosphere.
- POE oils may cause damage to certain plastics and roofing materials.
- Wrap all filter- driers and service valves with wet cloth when brazing.
- A liquid line filter- drier is required on every unit.
- Do not use with an R- 22 TXV.
- If indoor unit is equipped with an R-22 TXV, it must be changed to an R-410A TXV.
- Never open system to atmosphere while it is under a vacuum.
- When system must be opened for service, break vacuum with dry nitrogen and replace all filter-driers.
- Do not vent R-410A into the atmosphere.
- · Do not use capillary tube indoor coils.

